Vajradhara
One of Many
Namaste all,
firstly, i think that's a great title for a theory! even though it has a more formal name, most people have no idea that they are the same thing, when simply hearing the names
nevertheless.... on with the post:
Spooky action at a distance - EPR
One of the most vivid illustrations of the interactions of the mind of the observer with a quantum system is given by EPR - the 'Einstein Podolsky Rosen Paradox', or 'Spooky action at a distance' as it is sometimes known. The experimental evidence seems to show that the observer's mind goes to its object unobstructedly and instantaneously, for example through ten kilometres of intervening Geneva city-scape (walls, buildings, railway stations, the lot!) at speeds exceeding that of light.
Nor does the effect diminish with distance. According to the Copenhagen interpretation of quantum theory, the 'spooky action' can affect a particle instantaneously whether it is a metre away from the observer or halfway across the universe.
The observation of 'spooky action' relies on the concept of entanglement. It is possible to obtain pairs of fundamental particles where it is known that their properties will always cancel one another out, even when those properties have not been defined. These pairs are said to be 'entangled' . However the entanglement is conceptual rather than physical and the particles are free to move far apart.
Consider an experiment where we create an entangled pair of magnetic particles. Their polar alignments will always be opposite. We allow them to move far apart. We then place a Stern-Gerlach magnet in the path of one of the particles and observe what happens when it passes through. If it is defected upwards then, according to the 'spooky action' hypothesis, its distant partner would be deflected downwards by a similar magnet. By making the nearby observation we have instantaneously defined the properties of the distant particle.
Note that this is not the same thing as saying 'The near particle was always up but we didn't know until we decided to observe it. So the distant particle must always have been down even though we didn't know at the the time.'
The reason the statement above is incompatible with quantum theory is that we could have equally well decided to align the Stern-Gerlach magnet on a left/right axis instead of up/down. In which case we would have fixed the near particle as, say, left-deflected and the distant particle would instantaneously be known to be right-deflected.
For many years both theoretical and technical difficulties stood in the way of determining whether 'spooky action' does indeed take place. However as a result of the theoretical work of John Bell and the ingenious experimental designs of Alain Aspect strong evidence was obtained that the effect occurred over distances of a few metres. The act of making a decision of what attributes of one member of an entangled pair were to be observed immediately determined what could be observed of the other member.
Since then 'spooky action' has been demonstrated over increasing distances. The current record is 10 km obtained by Nicolas Gisin and his team at the University of Geneva [BUCHANAN 1997]. Starting from near Geneva railway station they sent entangled photons along optical fibres through the city to destinations separated by 10km. They showed that observing the state of one member of the pair instantaneously determined the state of the other.
check out this link for the experiment and more information:
http://home.btclick.com/scimah/Quantumphenomena.htm
firstly, i think that's a great title for a theory! even though it has a more formal name, most people have no idea that they are the same thing, when simply hearing the names
nevertheless.... on with the post:
Spooky action at a distance - EPR
One of the most vivid illustrations of the interactions of the mind of the observer with a quantum system is given by EPR - the 'Einstein Podolsky Rosen Paradox', or 'Spooky action at a distance' as it is sometimes known. The experimental evidence seems to show that the observer's mind goes to its object unobstructedly and instantaneously, for example through ten kilometres of intervening Geneva city-scape (walls, buildings, railway stations, the lot!) at speeds exceeding that of light.
Nor does the effect diminish with distance. According to the Copenhagen interpretation of quantum theory, the 'spooky action' can affect a particle instantaneously whether it is a metre away from the observer or halfway across the universe.
The observation of 'spooky action' relies on the concept of entanglement. It is possible to obtain pairs of fundamental particles where it is known that their properties will always cancel one another out, even when those properties have not been defined. These pairs are said to be 'entangled' . However the entanglement is conceptual rather than physical and the particles are free to move far apart.
Consider an experiment where we create an entangled pair of magnetic particles. Their polar alignments will always be opposite. We allow them to move far apart. We then place a Stern-Gerlach magnet in the path of one of the particles and observe what happens when it passes through. If it is defected upwards then, according to the 'spooky action' hypothesis, its distant partner would be deflected downwards by a similar magnet. By making the nearby observation we have instantaneously defined the properties of the distant particle.
Note that this is not the same thing as saying 'The near particle was always up but we didn't know until we decided to observe it. So the distant particle must always have been down even though we didn't know at the the time.'
The reason the statement above is incompatible with quantum theory is that we could have equally well decided to align the Stern-Gerlach magnet on a left/right axis instead of up/down. In which case we would have fixed the near particle as, say, left-deflected and the distant particle would instantaneously be known to be right-deflected.
For many years both theoretical and technical difficulties stood in the way of determining whether 'spooky action' does indeed take place. However as a result of the theoretical work of John Bell and the ingenious experimental designs of Alain Aspect strong evidence was obtained that the effect occurred over distances of a few metres. The act of making a decision of what attributes of one member of an entangled pair were to be observed immediately determined what could be observed of the other member.
Since then 'spooky action' has been demonstrated over increasing distances. The current record is 10 km obtained by Nicolas Gisin and his team at the University of Geneva [BUCHANAN 1997]. Starting from near Geneva railway station they sent entangled photons along optical fibres through the city to destinations separated by 10km. They showed that observing the state of one member of the pair instantaneously determined the state of the other.
check out this link for the experiment and more information:
http://home.btclick.com/scimah/Quantumphenomena.htm