Genome Fusion
"Scientists believe the ultimate event in HGT (horizontal gene transfer) occurs through genome fusion between different species when two symbiotic organisms become endosymbiotic. This occurs when one species is taken inside the cytoplasm of another species, which ultimately results in a genome consisting of genes from both the endosymbiont and the host. This mechanism is an aspect of the Endosymbiont Theory, which is accepted by a majority of biologists as the mechanism whereby eukaryotic cells obtained their mitochondria and chloroplasts [from endosymbiosis between bacteria and archaea] …
Within the past decade, the process of genome fusion by endosymbiosis has been proposed to be responsible for the evolution of the first eukaryotic cells. Using DNA analysis and a new mathematical algorithm called conditioned reconstruction (CR), it has been proposed that eukaryotic cells developed from an endosymbiotic gene fusion between two species: one an Archaea and the other a Bacteria. As mentioned, some eukaryotic genes resemble those of Archaea, whereas others resemble those from Bacteria. An endosymbiotic fusion event would clearly explain this observation ...
The theory that mitochondria and chloroplasts are endosymbiotic in origin is now widely accepted. More controversial is the proposal that (a) the eukaryotic nucleus resulted from the fusion of archaeal and bacterial genomes; and that (b) Gram-negative bacteria, which have two membranes, resulted from the fusion of Archaea and Gram-positive bacteria, each of which has a single membrane ..."
But which (across species) endosymbiosis between bacteria and archaea has never been observed or reproduced
"Scientists believe the ultimate event in HGT (horizontal gene transfer) occurs through genome fusion between different species when two symbiotic organisms become endosymbiotic. This occurs when one species is taken inside the cytoplasm of another species, which ultimately results in a genome consisting of genes from both the endosymbiont and the host. This mechanism is an aspect of the Endosymbiont Theory, which is accepted by a majority of biologists as the mechanism whereby eukaryotic cells obtained their mitochondria and chloroplasts [from endosymbiosis between bacteria and archaea] …
Within the past decade, the process of genome fusion by endosymbiosis has been proposed to be responsible for the evolution of the first eukaryotic cells. Using DNA analysis and a new mathematical algorithm called conditioned reconstruction (CR), it has been proposed that eukaryotic cells developed from an endosymbiotic gene fusion between two species: one an Archaea and the other a Bacteria. As mentioned, some eukaryotic genes resemble those of Archaea, whereas others resemble those from Bacteria. An endosymbiotic fusion event would clearly explain this observation ...
The theory that mitochondria and chloroplasts are endosymbiotic in origin is now widely accepted. More controversial is the proposal that (a) the eukaryotic nucleus resulted from the fusion of archaeal and bacterial genomes; and that (b) Gram-negative bacteria, which have two membranes, resulted from the fusion of Archaea and Gram-positive bacteria, each of which has a single membrane ..."
But which (across species) endosymbiosis between bacteria and archaea has never been observed or reproduced
Last edited: